Stabilizer information inequalities from phase space distributions

نویسندگان

  • David Gross
  • Michael Walter
چکیده

The Shannon entropy of a collection of random variables is subject to a number of constraints, the best-known examples being monotonicity and strong subadditivity. It remains an open question to decide which of these “laws of information theory” are also respected by the von Neumann entropy of many-body quantum states. In this article, we consider a toy version of this difficult problem by analyzing the von Neumann entropy of stabilizer states. We find that the von Neumann entropy of stabilizer states satisfies all balanced information inequalities that hold in the classical case. Our argument is built on the fact that stabilizer states have a classical model, provided by the discrete Wigner function: The phase-space entropy of the Wigner function corresponds directly to the von Neumann entropy of the state, which allows us to reduce to the classical case. Our result has a natural counterpart for multi-mode Gaussian states, which sheds some light on the general properties of the construction. We also discuss the relation of our results to recent work by Linden, Ruskai, and Winter.1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information-theoretic inequalities for contoured probability distributions

We show that for a special class of probability distributions that we call contoured distributions, information theoretic invariants and inequalities are equivalent to geometric invariants and inequalities of bodies in Euclidean space associated with the distributions. Using this, we obtain characterizations of contoured distributions with extremal Shannon and Renyi entropy. We also obtain a ne...

متن کامل

Achievable rates for the Gaussian quantum channel

We study the properties of quantum stabilizer codes that embed a finite-dimensional protected code space in an infinite-dimensional Hilbert space. The stabilizer group of such a code is associated with a symplectically integral lattice in the phase space of 2N canonical variables. From the existence of symplectically integral lattices with suitable properties, we infer a lower bound on the quan...

متن کامل

Classical statistical distributions can violate Bell’s inequalities

We investigate two-particle phase-space distributions in classical mechanics characterized by a well-defined value of the total angular momentum. We construct phase-space averages of observables related to the projection of the particles’ angular momenta along axes with different orientations. It is shown that for certain observables, the correlation function violates Bell’s inequality. The key...

متن کامل

Classification and properties of acyclic discrete phase-type distributions based on geometric and shifted geometric distributions

Acyclic phase-type distributions form a versatile model, serving as approximations to many probability distributions in various circumstances. They exhibit special properties and characteristics that usually make their applications attractive. Compared to acyclic continuous phase-type (ACPH) distributions, acyclic discrete phase-type (ADPH) distributions and their subclasses (ADPH family) have ...

متن کامل

A pr 1 99 3 Quantum - Mechanical Histories and the Uncertainty Principle : I . Information - Theoretic Inequalities

This paper is generally concerned with understanding how the uncertainty principle arises in formulations of quantum mechanics, such as the decoherent histories approach, whose central goal is the assignment of probabilities to histories. We first consider histories characterized by position or momentum projections at two moments of time. Both exact and approximate (Gaussian) projections are st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1302.6990  شماره 

صفحات  -

تاریخ انتشار 2013